爱范儿 4小时前
Kimi K2.5 带来了一个「蜂群时刻」
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_keji1.html

 

这两天 K2.5 的更新在海内外都赚足了讨论,一个原生多模态模型,提供了最先进的编码和视觉功能,以及自主智能体集群范式——召唤一群 agent 过来完成任务,听上去也太酷了。

技能多 Agent,好酷炫好好玩

K2.5 目前已经全量推出,客户端即可使用。K2.5 Agent 有免费体验次数,而 K2.5 集群则是付费功能,目前只对 Allegretto 计划。订阅了也有点数限额:每个月起步 47 点,每次任务消耗 3 点。

总体上是够用的,如果你拿不准主意,也可以参与今天的福利放送,率先体验一下。

不过作为 Kimi 老用户,当然是买,买它。正好手边有一堆文件需要合并,懒得手动复制粘贴了,就发给 Kimi 打开集群模式让它统一处理。

集群模型下,Kimi 还给这个地方加了个设计:会有一个工牌掉落下来,你可以看到是哪位「负责人」在执行任务。

合并文档最终的效果不错,而且我还进一步提出让它整理和调整各个层级的小标题,它可以实现先分析、提方案、再执行的链路。不过最好是下载到本地检查格式,Kimi 自带的预览功能,有时候不能准确反映当轮次的修改效果。

为了进一步看它的多并发操作,我参考官方 demo,测试了一个任务:检索近三个月内所有关于集群式 agent 的文献,然后整理到一个 excel 表格里,提炼核心发现和研究创新点。

这次安排的「人员」就比较多了,各个 agent 纷纷赶来支援,每个人都有自己分配到的任务。

这个的耗时明显比之前要长了很多,但没关系,可以先挂机让它自己跑。同时,我又安排了一个考察多模态能力的任务。

这是上传给 Kimi 的原始素材图,视频版中有更多动效。Kimi 要做的是把这个设计,转换为网页,同时保留所有的设计元素、风格。Prompt 写得简单,但实际工作是复杂的:既要识别、理解,又要生图,还要写前端。

这个任务也花了比较长的时间,但最终效果很好。有一些小细节上的问题,比如图片排版,悬停和跳转有问题等。不过核心的设计元素都保留了,并且网页功能也完备。

再回头来看,文献检索的任务也好了,整整齐齐列了一个 excel 出来:

最后一个测试任务是:上小红书找达人,要求是数码博主,粉丝量大于 5000,累计笔记多于 100 条。这两个条件其实很宽松,真的找起来范围很大。

Kimi 碰到的第一个问题是:进不去小红书。其实这里可以主动询问用户,类似 GPTagent 会用的办法。

但并没有,Kimi 转而去了新榜抓数据,这样既绕开了网页权限,又能直接读取数字。这不算是个很好的策略,最后只能抓出来数量很少的博主,显然小红书上不可能只有这些。另外,被挡在平台外,也无法体现 Kimi 的视觉能力,毕竟抓取的都是现成的数字。

不过总体上,Swarm Agent 给人一种踏实感。这些工作单体 agent 能不能做?自然是可以,只是要花时间、错漏多。而一群人来做,更加的令人安心。

创「新」在哪里?

说到这里,你可能会问:这不就是 Multi-Agent(多智能体)吗?很多公司都在做啊。

关键区别在于「谁来当老板」。

在传统的 Multi-Agent 系统中,人类需要预先设计好整个工作流程:谁负责什么、谁先谁后、结果怎么汇总。就像搭积木一样,你得先把图纸画好。而 Agent Swarm 的核心创新在于—— AI 自己就是设计师。

Kimi 团队用了一种叫 PARL(Parallel-Agent Reinforcement Learning,并行代理强化学习)的训练方法,让模型学会了「分解任务」和「调度资源」的能力。你不需要告诉它「先派 3 个人去搜资料、再派 2 个人去写总结」,它自己就能判断:这个任务适合拆成几份?每份派谁去做?什么时候该并行、什么时候该串行?

换句话说,Multi-Agent 是「人类编排的交响乐团」,Agent Swarm 是 AI 自己组队的爵士乐。

还有一个容易混淆的概念是 MoE:Mixture of Experts,混合专家模型。主流大模型内部都用了 MoE 架构,但它们和 Agent Swarm 完全是两回事。

MoE 发生在模型内部。你可以把它理解为:模型里住着一群「专家」,每次处理任务时,模型会动态决定激活哪几个专家来参与。但这些专家没有独立的身份,也不会互相协作,它们只是模型内部的不同计算路径。

Agent Swarm 发生在模型外部。每个子代理都是一个相对独立的执行单元,有自己的任务目标,可以并行运行,甚至可以调用工具(比如搜索网页、写代码)。它们之间是真正的「协作关系」,而不是简单的「激活关系」。

用个不太严谨的比喻:MoE 像是一个人的大脑里分区工作,Agent Swarm 像是一个公司里的团队协作

从实测和官方演示来看,Agent Swarm 至少在以下几类任务上表现出色:

第一类是大规模信息收集。 比如官方案例中 100 个领域创作者调研,以及我们这次实测的小红书博主检索。处理这类任务的共同特点是「可并行」——每个子任务相对独立,不需要太多中间协调。

第二类是视觉 + 代码的复杂任务。 Kimi K2.5 强调自己是「原生多模态」模型,能看懂图片和视频。结合 Agent Swarm 后,它可以一边分析 UI 截图,一边派不同代理分别处理布局、样式、交互逻辑,最后生成完整的前端代码。

第三类是长文档处理。 官方提到,Kimi Agent 可以处理「1 万字的论文或 100 页的文档」,支持 Word 批注、Excel 透视表、LaTeX 公式等高级功能。Agent Swarm 可以把长文档拆成多个章节,让不同代理并行处理,再汇总成统一格式——正如最开始的实测案例一样。

不过,别急着兴奋,Agent Swarm 并非「开了挂」。在实际使用中,你会发现几个明显的边界:

第一,任务本身得「可拆」。 如果任务步骤之间有强依赖关系——比如「先想清楚论点,再去找证据,最后才能写结论」——强行并行反而会帮倒忙。

第二,成本会显著上升。 100 个代理同时工作,意味着 100 倍的 API 调用。虽然总时间缩短了,但 Token 消耗是实打实的。

第三,质量不一定比单 Agent 好。 在某些需要深度推理的任务上,比如数学证明、复杂编程题,单 Agent 的「深度思考模式」反而更可靠。Agent Swarm 的优势在于「广度」和「速度」,而不是「深度」。实测下来,部分任务 Kimi 会自动调剂成单 Agent 模型,这点 Kimi 团队成员也在 reddit 的线上问答里得到了证实。

Kimi 团队眼中的未来

在 Reddit 的 AMA(Ask Me Anything)活动中,Kimi 团队回答了大量关于技术、产品和愿景的问题。透过这些回答,我们可以拼凑出他们对 Agent Swarm 乃至整个 AI 未来的思考。

在回答「Agent Swarm 下一步会怎么发展」时,Kimi 团队透露了几个方向:

【更智能的调度】目前的 Agent Swarm 已经能自动分解任务和创建子代理,但调度策略还比较「粗粒度」。未来有希望能建立更精细的资源分配——比如根据任务的紧急程度、复杂度、依赖关系,动态决定「派多少人、干多久」。

【更深度的协作】现在的子代理之间交流有限,主要是「各自干完活,把结果交给老大汇总」。未来可能会支持子代理之间的直接协作,比如「A 代理发现一个问题,可以主动呼叫 B 代理来帮忙」。

【更广泛的工具集成】Kimi 团队表示,他们正在扩展 Agent 可以调用的工具库,包括但不限于更多的办公软件、开发环境、数据分析工具。目标是让 Agent Swarm 能真正「端到端」地完成复杂工作流。

AMA 中还有一个问题很有意思:许多说法称,scaling law 已经碰到了上限,Kimi 团队如何看待这个问题呢?

Kimi 团队的回答是:Agent 集群就是他们走出的尝试。展望未来,或许会出现一种几乎不、甚至完全不需要人类先验信息的模型。

这个愿景听起来有些理想化,但细想之下颇有深意。过去两年,AI 领域一直在「卷参数」——模型越来越大、算力越来越贵。而 Agent Swarm 代表了一种不同的思路:与其让一个超级大脑做所有事,不如让一群大脑分工协作。

这可能才是通向 AGI 的更务实路径:单独一只蜜蜂并不起眼,但当成千上万只蜜蜂协同工作时,它们能建造出精妙的蜂巢。

宙世代

宙世代

ZAKER旗下Web3.0元宇宙平台

一起剪

一起剪

ZAKER旗下免费视频剪辑工具

相关标签

kimi 效果 小红书 技能 准确
相关文章
评论
没有更多评论了
取消

登录后才可以发布评论哦

打开小程序可以发布评论哦

12 我来说两句…
打开 ZAKER 参与讨论