爱范儿 2小时前
100 万亿 Token 揭秘全球用户怎么用 AI:一半算力用在「不可描述」的地方
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_keji1.html

 

AI 领域迄今最大规模的用户行为实录,刚刚发布了。

这是全球模型聚合平台 OpenRouter 联合硅谷顶级风投 a16z 发布的一份报告,基于全球 100 万亿次真实 API 调用、覆盖 300+ 款 AI 模型、60+ 家供应商、超过 50% 非美国用户

我们能从里面看到人类真的在怎么用 AI,尤其是那些不会出现在官方案例、不会被写进白皮书的对话。

APPSO 从里面的发现了三个最反直觉的结论:

1. 人类最真实的刚需不是生产力,是「荷尔蒙」和「过家家」。超过 50% 的开源模型算力,被用来搞角色扮演、虚拟恋人和 NSFW 内容。写代码?那只是第二位。

2. 真正的高端用户根本不看价格标签,而便宜到几乎免费的模型,死得反而更快。早期抓住用户痛点的模型,会更容易锁住用户。

3. 中国模型只用一年就撕开了防线。 从 1.2% 到 30%,DeepSeek 和 Qwen 为代表的的国产模型一跃成为开源的王。

必须要注意的是:这份报告不可避免地带有「偏见」。

OpenRouter 的用户主要是个人开发者、中小企业、开源爱好者,而非 500 强企业。那些每月在 Azure、AWS 上烧掉数百万美元的大厂 AI 预算,并不在这份数据里。所以:

中国模型的占比会被放大(中小开发者更愿意尝试开源和低价方案)

开源模型的份额会被高(企业级用户更倾向闭源 API 的稳定性)

Roleplay 等「娱乐向」场景会显著偏高(大厂不会用公开 API 搞这些)

企业级混合部署的真实用量看不到(那些都走私有化和 Azure OpenAI Service)

但回头想想,这恰恰是这份报告的价值所在。

当所有人在发布会上鼓吹 AI 如何改变生产力时,我们可以清楚看到:谁在裸泳,谁在通吃,谁在悄悄统治那些不可描述的领域

从 1% 到 30%,中国模型撕开 OpenAI 帝国的口子

如果把 AI 市场看作一张世界地图,2024 年之前,它是属于 OpenAI 和 Anthropic 的闭源帝国。他们筑起 API 的高墙,收着过路费,定义着规则。

但墙塌了。

看这张使用量分布图,开源模型(OSS)的 token 使用量已经飙升至总量的三分之一,而且这个数字还在以惊人的速度攀升。

2024 年夏天是一个分水岭时刻。

在此之前,市场是死水一潭。OpenAI 的 GPT 系列和 Anthropic 的 Claude 分食大部分蛋糕,开源模型只是点缀。

在此之后,随着 Llama 3.3 70B、DeepSeek V3、Qwen 3 Coder 的密集发布,格局瞬间攻守易形。那些曾经高高在上的 API 调用量,开始遭遇断崖式的分流。

这里必须专门谈谈中国模型的崛起,因为这是过去一年最具侵略性的叙事。

数据显示:

2024 年初: 中国开源模型在全球使用量中的占比仅为 1.2%,几乎可以忽略不计

2025 年末: 这个数字飙升至 30%,在某些周份甚至触及峰值

从 1.2% 到 30%,这是一场自下而上的包围战。

DeepSeek 以总计 14.37 万亿 token 的使用量稳居开源榜首,虽然其霸主地位正在被稀释,但体量依然惊人。Qwen 紧随其后,以 5.59 万亿 token 占据第二,而且在编程领域的表现极为凶猛,可以直接与 Claude 掰手腕。

更关键的是节奏。中国模型的发布周期极其密集。DeepSeek 几乎每个季度都有重大更新,Qwen 的迭代速度甚至更快。这种「高频打法」让硅谷的巨头们疲于应对:自己刚发布一个新模型,对手已经连发三个变种。

戳破 AI 泡沫,三个被忽略的真相

现在,让我们戳破那些想当然的泡沫,看看 AI 在真实世界里到底被用来干什么。

真相一:「小模型已死,中型崛起」

市场正在用脚投票,抛弃那些「又快又傻」的极小模型。

数据显示,参数量小于 15B 的模型份额正在暴跌。用户发现,速度再快也没用,如果 AI 傻得像个复读机,那还不如不用。

中型模型(15B-70B 参数)成为新宠。 这个市场甚至是被 Qwen2.5 Coder 32B 在 2024 年 11 月一手创造出来的。此前,这个参数区间几乎是空白;此后,Mistral Small 3、GPT-OSS 20B 等模型迅速跟进,形成了一个新的战场。

既不便宜又不够强的模型正在失去市场。你要么做到极致的强,要么做到极致的性价比。

真相二:不是 programming,更多是 playing

虽然我们在新闻里总看到 AI 如何提高生产力,但在开源模型的使用中,超过 50% 的流量流向了「角色扮演」(Roleplay)

更直白一点说:

超过一半的开源 AI 算力,被用来做这些事:

虚拟恋人对话(「陪我聊天,记住我的喜好」)

角色扮演游戏(「你现在是个精灵公主……」)

互动小说生成(「继续这个故事,加入更多细节」)

成人向内容创作(报告中标记为「Adult」类别,占比 15.4%)

这是基于 Google Cloud Natural Language 分类 API 对数亿条真实 prompt 的分析结果。当 AI 检测到一个请求属于 /Adult 或 /Arts & Entertainment/Roleplaying Games 时,这条请求就会被打上标签。

这意味着,对于海量 C 端用户而言,AI 首先是一个「情感投射对象」,其次才是一个工具

同时流媒体和硅谷巨头出于品牌形象(Brand Safety)考量,刻意回避甚至打压这一需求。但这恰恰造就了巨大的「供需真空」。用户对情感交互、沉浸式剧情、甚至 NSFW(少儿不宜上班别看)内容的渴求,被压抑在主流视线之外,最终在开源社区报复性爆发。

编程是第二大使用场景,占比 15-20%。 没错,写代码这件被媒体吹上天的事,在真实世界里只排第二。

所以真相是什么?

别装了。人类最真实的两大刚需,一个是荷尔蒙,一个是代码。 前者让人类感到陪伴和刺激,后者让人类赚到钱。其他那些「知识问答」「文档总结」「教育辅导」,加起来都不到这两者的零头。

这也解释了为什么开源模型能快速崛起,因为开源模型通常审查较少,允许用户更自由地定制性格和剧情,非常适合情感细腻的互动。

真相三:娱乐至死的 DeepSeek 用户

如果我们单独拉出 DeepSeek 的数据,会发现一个更极端的分布:

- Roleplay + Casual Chat(闲聊):约 67%

- Programming:仅占小部分

在这份报告里,DeepSeek 几乎是一个 C 端娱乐工具,而非生产力工具。它的用户不是在写代码,而是在和 AI「谈恋爱」。

这和 Claude 形成了鲜明对比。

机会只有一次,赢家通吃

为什么有的模型昙花一现,有的却像胶水一样粘住用户?

报告提出了一个概念:Cinderella 「Glass Slipper」Effect(灰姑娘的水晶鞋效应)

定义: 当一个新模型发布时,如果它恰好完美解决了用户长期未被满足的某个痛点(就像水晶鞋完美契合灰姑娘的脚),这批用户就会成为该模型的「死忠粉」(基础留存用户),无论后续有多少新模型发布,他们都很难迁移。

值得注意的是,机会只有一次。如果在发布初期(Frontier window)没能通过技术突破锁定这批核心用户,后续再怎么努力,留存率都会极低。

为什么?

因为用户已经围绕这个模型建立了整套工作流:

- 开发者把 Claude 集成进了 CI/CD 流程

- 内容创作者把 DeepSeek 的角色设定保存了几十个版本

- 切换成本不仅是技术上的,更是认知和习惯上的

赢家画像:DeepSeek 的「回旋镖效应」

DeepSeek 的留存曲线非常诡异:

用户试用 → 流失(去试别的模型)→ 过了一段时间骂骂咧咧地又回来了

这就是所谓的「回旋镖效应」(Boomerang Effect)。数据显示,DeepSeek R1 的 2025 年 4 月用户组,在第 3 个月出现了明显的留存率上升。

为什么他们回来了?

因为「真香」。在试遍了市面上所有模型后,发现还是 DeepSeek 性价比最高:

免费或极低价

角色扮演能力足够好

没有恼人的内容审查

输家画像:Llama 4 Maverick 们的悲剧

相比之下,像 Llama 4 Maverick 和 Gemini 2.0 Flash 这样的模型,它们的留存曲线让人心疼:

从第一周开始就一路向下,永不回头。

为什么?因为它们来得太晚,也没啥绝活。当它们发布时,用户已经找到了自己的「水晶鞋」,新模型只能沦为「备胎」。

在 AI 模型市场,迟到的代价是永久性的边缘化。

各个 AI 的人设

在这场战争中,没有谁能通吃,大家都在自己的 BGM 里痛苦或狂欢。让我们给每个玩家贴上最准确的标签:

Claude ( Anthropic ) :直男工程师的「神」

人设:偏科的理工男,只懂代码,不懂风情

数据不会撒谎,Claude 长期吃掉了 编程(Programming)领域 60% 以上 的份额。虽然最近略有下滑,但在写代码这件事上,它依然是那座不可逾越的高墙。

用户画像:

- 超过 80% 的 Claude 流量都跟技术和代码有关

- 几乎没人拿它来闲聊或角色扮演

Claude 就像那个班里的学霸——只有在考试时你才会找他,平时根本不会一起玩。

OpenAI:从「唯一的神」到「平庸的旧王」

人设:曾经的霸主,如今的工具箱

OpenAI 的份额变化极具戏剧性:

- 2024 年初: 科学类查询占比超过 50%

- 2025 年末: 科学类占比跌至不足 15%

它正在从「唯一的神」变成一个「什么都能干但什么都不精」的工具箱。虽然 GPT-4o Mini 的留存率依然能打,但在垂直领域,它已经不再是唯一的选择。

核心问题在于: 被自己的成功困住了。ChatGPT 让它成为大众品牌,但也让它失去了专业领域的锋芒。

Google ( Gemini ) :通才的焦虑

人设:什么都想要,什么都不精

谷歌像个茫然的通才。法律、科学、翻译、通识问答都有它的身影,但:

- 在编程领域份额仅 15%

- 在角色扮演领域几乎不存在

但在一个越来越垂直化的市场里,通才意味着平庸。

DeepSeek:野蛮人的胜利

人设:不按常理出牌的颠覆者,C 端娱乐之王

DeepSeek 用极致的性价比撕开了口子,证明了即使不依靠最强的逻辑推理,靠「好玩」+「免费」也能打下江山。

核心数据:

- 总使用量 14.37 万亿 token(开源第一)

- 67% 的流量是娱乐和角色扮演

- 回旋镖效应明显,用户试完别的还是会回来

它的成功证明了一件事:在消费级市场,「足够好」+「足够便宜」+「没有限制」 就能通吃。

xAI ( Grok ) :马斯克的「乱拳」打法

人设:半路杀出的程咬金,靠免费抢市场

Grok 的数据非常有趣:

- 早期 80% 都是程序员在用(Grok Code Fast 针对编程优化)

- 免费推广后,突然涌入大量普通用户,用户画像瞬间变杂

免费能拉来流量,但流量 ≠ 忠诚度。一旦收费,这批用户会立刻流失。

最后,让我们用一张图看懂这个江湖。

当前大模型市场已形成清晰的四大阵营格局:

首先是 「效率巨头」 阵营,以 DeepSeek、Gemini Flash 为代表,核心优势在于 「便宜大碗」 的高性价比,专为跑量场景设计,尤其适用于无需复杂逻辑推理的重复性 「脏活累活」,成为追求效率与成本平衡的首选。

其次是 「高端专家」 阵营,Claude 3.7 与 GPT-4 是该领域的标杆,尽管定价偏高,但凭借顶尖的准确率和复杂任务处理能力,赢得了企业用户的青睐。

与此同时,「长尾」 阵营的生存空间正持续收缩,数量众多的小模型因缺乏差异化优势和技术壁垒,正逐渐被市场淘汰。

此外,以中国模型为核心的 「颠覆者」 阵营正快速崛起,凭借高频迭代的技术更新、高性价比的定价策略以及深度本土化的适配能力,市场份额仍在持续扩张,成为搅动行业格局的关键力量。

藏在 100 万亿个 Token 背后的趋势

作为观察者,APPSO 从这份报告中观察到的一些趋势变化,或许将定义 AI 未来的竞争格局:

1. 多模型生态是常态,单模型崇拜是病态

开发者会像搭积木一样,用 Claude 写代码,用 DeepSeek 润色文档,用 Llama 做本地部署。忠诚度?不存在的。

2. Agent(智能体)已经吃掉了一半江山

推理模型(Reasoning Models)的份额已经超过 50%。我们不再只想要 AI 给个答案,我们想要 AI 给个「思考过程」。多步推理、工具调用、长上下文是新的战场。

3. 留存 > 增长

除了早期用户留存率,其他的增长数据都是虚荣指标。

4. 垂直领域的「偏科」比全能更有价值

Claude 靠编程通吃,DeepSeek 靠娱乐称王。想要什么都做的模型,最后什么都做不好。

5. 价格不是唯一变量,但「好用」是永远的硬通货

数据显示,价格和使用量之间相关性极弱。真正的高端用户对价格不敏感,而低端用户只认那几个「性价比神机」。夹在中间的平庸模型,死得最快。

6. 中国模型的进攻才刚刚开始

从 1.2% 到 30% 只用了一年。站稳脚跟后,下一步是什么?是定义规则,还是被规则驯化?这将是 2026 年最值得关注的故事。

AI 的世界不是由发布会上的愿景定义的,而是由用户每天真实发送的那万亿个 Token 定义的。

那些 Token 里,有人在写代码改变世界,也有人在和虚拟女友说晚安,理性的代码与感性的对话并行不悖。

或许不得不承认,AI 的发展,也是人类欲望的延伸。

宙世代

宙世代

ZAKER旗下Web3.0元宇宙平台

一起剪

一起剪

ZAKER旗下免费视频剪辑工具

相关标签

ai 开源 azure 美国
相关文章
评论
没有更多评论了
取消

登录后才可以发布评论哦

打开小程序可以发布评论哦

12 我来说两句…
打开 ZAKER 参与讨论