爱范儿 11小时前
AI 大神 Karpathy 2025 年度总结刷屏:AI 既是天才也是智障,这 6 个转折最关键
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_keji1.html

 

最近各种年度回顾陆续上线, OpenAI 的前联合创始人 Andrej Karpathy 也交出了自己对大模型的年度总结

就在今年早些时候,他在 YC 的一场演讲刷爆了全网,提出了不少新的观点:

软件 3.0 已来: 从最初的人写代码(1.0),到喂数据训练模型(2.0),现在我们进入了直接对模型「念咒语」(Prompt)的 3.0 时代。

LLM 是新操作系统: 它不是像自来水一样的普通商品,而是一个负责调度内存(Context Window)和 CPU(推理算力)的复杂 OS。

Agent 的十年: 别指望 AI Agent 一年就成熟,从 99% 到 99.999% 的可靠性,我们需要走上十年。

Karpathy 今天这篇《2025 年度总结》,他再次向我我们剖析了这一年 AI 究竟长出了什么样的「脑子」。

以下是对 Karpathy 年度总结的精译,APPSO 在不改变原意的基础上做了更多通俗解读。

如果想看原文可以点击 https://karpathy.bearblog.dev/year-in-review-2025/

2025 年是 LLM(大语言模型)发展强劲且充满变数的一年。以下是我列出的几点个人认为值得注意且稍感意外的「范式转变」——这些变化不仅重塑了行业版图,更在概念层面上狠狠地冲击了我的认知。

太长不看版:

2025 年既让人兴奋,又有点让人措手不及。

LLM 正在作为一种新型智能涌现,它同时比我预期的要聪明得多,也比我预期的要笨得多。

无论如何,它们极其有用。我认为即使以目前的能力,行业甚至还没挖掘出其潜力的 10%。同时,还有太多的想法可以尝试,从概念上讲,这个领域感觉依然广阔。正如我今年早些时候提到的,我同时(表面上矛盾地)相信:我们将看到持续快速的进步,但前方仍有大量艰苦的工作要做。

系好安全带,我们要发车了。

1. RLVR:教 AI 像做奥数题一样「思考」

在解释这个复杂的基础概念之前,先看看以前是大模型训练是怎么做的?

在 2025 年初,各大实验室训练 LLM 的「老三样」配方非常稳定:

1. 预训练(Pretraining):像 GPT-3 那样,让 AI 读遍全网文章,学会说话。

2. 监督微调(SFT):找人写好标准答案,教 AI 怎么回答问题。

3. 人类反馈强化学习(RLHF):让 AI 生成几个答案,人来打分,教它讨人喜欢。

现在发生了什么变化?

2025 年,我们在这个配方里加了一味猛药:RLVR(从可验证奖励中进行强化学习)。

这是什么意思?

简单来说,就是不再让人来打分(人太慢且主观),而是让 AI 去做那些「有标准答案」的任务,比如数学题或写代码。对就是对,错就是错,机器能自动验证。

在数百万次的自我博弈和试错中,模型自发地演化出了看似「推理」的策略。它们学会了先把大问题拆解成小步骤,甚至学会了「回过头来检查」这种高级技巧(参考 DeepSeek R1 论文)。

核心对比:

旧范式(RLHF): 像是教小孩写作文。因为没有标准答案,AI 很难知道自己哪一步想错了,只能模仿人类的语气。

新范式(RLVR): 像是把 AI 关进奥数训练营。不用教它具体怎么想,只要给它足够多的题和对错反馈,它自己就能摸索出解题套路。

这一招太好用了,以至于 2025 年大部分算力都被这只「吞金兽」吃掉了。结果就是:模型并没有变大,但训练时间变长了。 我们还获得了一个新旋钮:让 AI 思考得久一点。OpenAI 的 o1 是开端,而 o3 则是真正的拐点。

2. 幽灵 vs 动物:AI 不是「电子宠物」

2025 年,我和整个行业终于从直觉上理解了 LLM 智能的「形状」。

一个惊悚的比喻:我们不是在像养宠物一样「进化 / 养育动物」,我们是在「召唤幽灵」

为什么这么说?

因为 AI 的一切都和生物不同。人类的大脑是为了在丛林里活下来、为了繁衍后代而优化的;而 LLM 的大脑是为了模仿人类文字、在数学题里拿分、在竞技场里骗赞而优化的。

参差不齐的智能(Jagged Intelligence):

正是因为 RLVR(可验证奖励)的存在,AI 的能力在某些领域(如数学、编程)会突然飙升成刺状。这就导致了一种极其滑稽的现象:

它同时是一个绝世天才(秒解高数题);

又是一个智障小学生(会被简单的逻辑陷阱骗得团团转)。

▲这里 Karpathy 引用了一张梗图:人类智能是圆润的蓝色圆圈,AI 智能是像海胆一样满是尖刺的红色图形。这很形象 .

这也解释了为什么我对现在的「跑分榜单」(Benchmarks)失去了信任。

什么是「刷榜」的本质?

既然榜单是可验证的,那就可以用 RLVR 针对性训练。现在的实验室都在搞「应试教育」,把 AI 的能力尖刺专门往考题上长。「在测试集上训练」已经不仅仅是作弊,而成了一门新的艺术形式。

3. Cursor:不仅是编辑器,更是「包工头」

Cursor 今年的爆火,揭示了一个新真相:LLM 应用层比我们想象的要厚。

大家开始谈论「医疗界的 Cursor」、「法律界的 Cursor」。这些应用到底做了什么?

「上下文工程师」: 帮你整理好所有背景资料喂给 AI。

「工头」: 在后台偷偷指挥多个 LLM 干活,把复杂任务拆解,还要帮你省钱。

「遥控器」: 给你一个调节「自主性」的滑块,决定放手让 AI 干多少。

预测:大模型实验室(如 OpenAI)会负责培养「全科大学生」;而应用开发商(如 Cursor)则负责给这些学生提供私有数据和工具,把他们组建成「专业施工队」

4. Claude Code:住在你电脑里的「赛博幽灵」

Claude Code ( CC ) 的出现让我眼前一亮。它不仅仅是一个能写代码的 Agent(智能体),更重要的是:它活在你的电脑里

对比来看,我认为 OpenAI 搞错了方向。

OpenAI 早期的 Agent 都在云端跑(ChatGPT),离你的真实环境太远。虽然云端智能体听起来像是 AGI 的终局,但在当前这个「参差不齐」的过渡阶段,本地才是王道。

为什么本地很重要?

因为你的代码、你的配置、你的密钥、你的混乱环境,都在本地。Anthropic(Claude 的母公司)搞对了优先级,他们把 AI 塞进了一个小小的命令行界面(CLI)里。

它不再是你浏览器里的一个网页(像 Google 那样),它变成了一个寄宿在你电脑里的「赛博幽灵」,随时准备帮你干活。这才是未来 AI 交互的样子。

5. Vibe Coding

什么是 Vibe Coding?

这是我在推特上随口造的一个词(居然火了):意思是写代码不再需要你真的懂语法,你只需要用英语描述你的「意图」和「感觉」,剩下的交给 AI。

这带来了什么改变?

对于普通人: 编程的门槛彻底消失了。

对于专家: 代码变得像纸巾一样「廉价、一次性、用完即弃」。

举个例子,我为了找一个 Bug,可能会让 AI 现场写一个专门的 App 来测试,测完就删。放在以前,为了找个 Bug 专门写个 App?疯了吧!但在 2025 年,代码是免费的。

Vibe Coding 将会彻底重塑软件行业,也会改写程序员的招聘 JD。

6. Nano Banana:AI 终于有了自己的「脸」

为什么现在的 AI 交互很反人类?

不管是 ChatGPT 还是 Claude,我们还在用「打字」跟它们聊天。这就像 80 年代还在用 DOS 命令行的黑底白字。

事实是: 计算机喜欢文本,但人类讨厌读文本。人类是视觉动物,我们喜欢看图、看表、看视频。

Google Gemini Nano banana(这是一个虚构的模型代号,指代某种多模态交互模型)是 2025 年的另一个范式转变。它暗示了未来的 LLM GUI(图形界面) 是什么样子的

未来的 AI 不应该给你吐一堆字,它应该直接给你画一张图、生成一个网页、弹出一个交互面板。 这不仅仅是「画图」,而是将文本生成、逻辑推理和视觉表达纠缠在一起的混合能力。

宙世代

宙世代

ZAKER旗下Web3.0元宇宙平台

一起剪

一起剪

ZAKER旗下免费视频剪辑工具

相关标签

ai 奥数 创始人 安全带
相关文章
评论
没有更多评论了
取消

登录后才可以发布评论哦

打开小程序可以发布评论哦

12 我来说两句…
打开 ZAKER 参与讨论